4,999 research outputs found

    Diffusion technique stabilizes resistor values

    Get PDF
    Reduction of the contact resistance stabilizes the values, over a broad temperature range, of resistors used in linear integrated circuits. This reduction is accomplished by p-plus diffusion under the alloyed aluminum contacts

    Quantum interference of electrons in a ring: tuning of the geometrical phase

    Full text link
    We calculate the oscillations of the DC conductance across a mesoscopic ring, simultaneously tuned by applied magnetic and electric fields orthogonal to the ring. The oscillations depend on the Aharonov-Bohm flux and of the spin-orbit coupling. They result from mixing of the dynamical phase, including the Zeeman spin splitting, and of geometric phases. By changing the applied fields, the geometric phase contribution to the conductance oscillations can be tuned from the adiabatic (Berry) to the nonadiabatic (Ahronov-Anandan) regime. To model a realistic device, we also include nonzero backscattering at the connection between ring and contacts, and a random phase for electron wavefunction, accounting for dephasing due to disorder.Comment: 4 pages, 3 figures, minor change

    Investigation of the potentialities of photochemical laser systems. Part I - Survey and analysis Final report, 1 Feb. 1966 - 31 Jan. 1967

    Get PDF
    Photodissociative laser systems used to convert solar radiation to monochromatic coherent emission - excitation mechanisms, spectroscopy of gases absorbing light, and chemical processe

    Quantum ratchets in dissipative chaotic systems

    Full text link
    Using the method of quantum trajectories we study a quantum chaotic dissipative ratchet appearing for particles in a pulsed asymmetric potential in the presence of a dissipative environment. The system is characterized by directed transport emerging from a quantum strange attractor. This model exhibits, in the limit of small effective Planck constant, a transition from quantum to classical behavior, in agreement with the correspondence principle. We also discuss parameter values suitable for implementation of the quantum ratchet effect with cold atoms in optical lattices.Comment: Significant changes: Several text improvements and new results. Figure 2 modified. Figure 4 adde

    The ratchet effect and the transporting islands in the chaotic sea

    Full text link
    We study directed transport in a classical deterministic dissipative system. We consider the generic case of mixed phase space and show that large ratchet currents can be generated thanks to the presence, in the Hamiltonian limit, of transporting stability islands embedded in the chaotic sea. Due to the simultaneous presence of chaos and dissipation the stationary value of the current is independent of initial conditions, except for initial states with very small measure.Comment: 5 pages, 6 figure
    corecore